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the  use of Fourier and line-breadth methods for the determination of stacking-fault parameters 
in hexagonal close-packed metals has been investigated. Greatest accuracy is probably obtained 
by Fourier analysis of the { 10i 1 } line, but analyses of other lines axe required in addition when more 
than one type of faulting is present. Line-breadth methods usually give satisfactory results, and 
are valuable in determining the predominant type of faulting. Spontaneously transformed cobalt 
powders often contain mainly growth faults, whereas specimens which have been deformed to com- 
plete the martensitic transformation contain mainly deformation faults. Specimens with mixed 
faulting have also been obtained; an alternative hypothesis, that the faults are 'clustered', will ex- 
plain the line-breadth results, but not those obtained by Fourier analysis. 

1. Introduct ion 

Powder specimens of cobalt give anomalous X-ray 
diffraction patterns because of the presence of stacking 
faults in the h.c.p, phase (Edwards & Lipson, 1942; 
Wilson, 1942, 1949). The general theory of diffraction 
from layer structures containing random mistakes is 
now well understood (Wilson, 1949; Jagodzinski, 1949; 
Gevers, 1953), and detailed expressions for the dif- 
fracted intensity have been obtained for most kinds 
of fault. Wilson's theory considered only growth 
faults, but Paterson (1952) extended it to deformation 
faults in f.e.c, structures, and later papers have dealt 
with h.c.p, deformation faults (Christian, 1954) and 
co-existing growth and deformation faults (Gevers, 
1954). The effects of the more complex 'extrinsic' 
faults (Frank & Nicholas, 1953) have not been con- 
sidered in detail, but these may have higher energies, 
and so be less frequent. They are neglected in the 
present paper. 

Faulting in f.c.c, materials produces displacements 
in the positions of some of the diffraction peaks, and 
this provides a convenient measure of the amount of 
faulting. In  h.c.p, structures, the peak position does 
not change, and measurements of line breadth or 
line shape have to be made. In recent years, consider- 
able attention has been paid to the interpretation of 
broadened Debye-Scherrer lines in terms of mean 
square atomic displacements (strain coefficients) and 
particle-size effects. There appears, however, to have 
been no quanti tat ive work on fault broadening in 
cobalt since the original paper by Edwards & Lipson. 

In  the course of experiments on the factors affecting 
growth and deformation faulting in cobalt, we ex- 
perienced difficulty in obtaining reproducible results 
from different hnes on the same photograph. Similar 
discrepancies are evident when the data  of Edwards 
& Lipson are examined. The present paper describes 
the result of an investigation into the accuracy of the 
various possible methods of determining the faulting 

parameter in h.c.p, materials. The methods tried have 
natural ly been suggested by the many thorough in- 
vestigations into strain and particle-size broadening. 

2. E x p e r i m e n t a l  m e t h o d s  

Hydrogen-reduced cobalt powder (99.98% pure), of 
250-300 mesh, was used in all the experiments. After 
annealing in vacuo for one day at  either 500 or 800 ° C., 
Debye-Scherrer specimens were prepared by lightly 
rolling into rods with dilute Canada balsam solution. 
This procedure imparted very mild stresses to the 
specimens, and had the advantage of producing varia- 
tions in the proportion of the h.c.p, phase and the 
degree of faulting. A few specimens were annealed, 
cooled and photographed in thin-walled sihca capil- 
laries, thus minimizing all stresses. X-ray photographs 
were taken in 9 or 19 cm. diameter cameras, using 
crystal monochromatized or (occasionally) filtered 
radiation from cobalt, nickel or molybdenum targets;  
monoehromatized nickel radiation was used for most 
of the work. The films were photometered by hand, 
using a direct-reading instrument and taking readings 
every 0.02 mm. The exposures were regulated to 
ensure tha t  the photometered regions always came 
within the linear portion of the film blackening X-ray 
intensity relation; this region was found by means 
of a cahbrated step wedge. Greater accuracy would 
probably have been obtained by the use of Geiger 
counter equipment, but  this was not available when 
the work was started. 

The K~ 1 portion of a composite c~1-a2 doublet was 
obtained from the observed photometer trace by a 
graphical procedure (Rachinger, 1948), and an analyt- 
ical version of the method (Anantharaman & Christian, 
1953) was used to assist in obtaining self-consistent 
background levels. The c~x components were always 
found to be symmetrical about their peaks, as re- 
quired by theory. 
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3. M e t h o d s  o f  c a l c u l a t i o n  

The diffraction theory is based on the assumption 
tha t  the faults are distributed at  random and occupy 
whole planes. The parameters c~, c~' are the probabilities 
of finding a growth or a deformation fault at any plane, 
and, to a first approximation at least, may be re- 
garded as the fractional areas of the two kinds of fault 
on all atomic close-packed planes in the more realistic 
case where the faults do not occupy whole planes. 
We use normal hexagonal indices ( H K . L ) ,  and we let 
h 3 be a continuous variable in the c* direction of 
reciprocal space. For  broadened lines, H - K  = 3 N ± l  
(N any integer) and the diffraction effects depend on 
whether L is even or odd. The intensity distribution 
in reciprocal space,/5(~), is a function of the displace- 
ment ~ = h a - L  from the nearest diffraction maximum 
(reciprocal-lattice point), and we suppose this has 
integral breadth /5 and integrated intensity T. The 
last two quantities are defined between limits $= ± 1. 
In terms of a parameter,  @, defined below, the results 
may  now be conveniently summarized in the equations: 

/5(~) = 5- + 2 . g  cos ~ m ~  ( la )  
m = l  

T 1-@~ 
= 2-" 1-2@ cos 7~+@ 9 ' (lb) 

/5 = 2(1-@)/(1+@). (2) 

The values of @ to be used in equations (1) and (2) 
are @ = @e, @ = -@o for values of L which are even 
and odd respectively, where 

@e = ½{-c~+[a2+(4-8c~)(1-3r)]½},  / 
@o = ½{_c~_[~+(4_8c~)(1_3y)]½} ' , (3) 

and 
y = ~ ' (1-od)  . 

The general expressions for @~ and @o are due to 
Gevers (1954); it is readily verified tha t  they reduce 
to those for pure growth and deformation faulting if 
~, a '  are respectively equated to zero. If faulting is 
predominantly of one kind, this is shown by the rela- 
tion between the breadths of the lines with L even 
and odd. For  growth faults only, fldflo = 3, whilst for 
deformation faults only, /5d/5o = 1. 

The integrated intensities, T, for L even and odd 
are given by the relations 

m e ---- C(l+2@o)/(@o-@e), To = C(1 + 2 @ e ) / ( @ e - @ o )  , (4) 

where C is a constant. 
In  principle, the values of c~, ci' may  be calculated 

from experimental results using any of the equations 
(1), (2) or (4). The predicted intensity distributions in 
reciprocal space may be compared with those measured 
from single-crystal photographs, but  in practice the 
partially averaged effects obtained in powder photo- 
graphs have to be used for quanti tat ive work. I t  is 

often possible to produce heavy faulting only in powder 
specimens. 

If B(x) is the observed profile of a broadened line, 
where x is a linear dimension along the film, and b(x) 
is the corresponding profile in the absence of faults, 
then, as first shown by Jones (1938), we have 

f 
oo 

B(x) = b (x ) f l ( x - z )dz  , (5) 
- - 0 0  

where fl(x) is the diffraction profile (suitably normal- 
ized), and is simply related to /5(~). The main diffi- 
culties in interpretation arise because it is not possible 
to obtain B(x) accurately between limits of x corres- 
ponding to ~ = ±1. Between limits x = ±xB, only 
part  of the intensity will be recorded, and the back- 
ground level will be incorrectly measured. The ob- 
served distribution will be 

B(zB)(x) = B ( x ) - B ( x B ) ,  Ixl < IxBI , } 
B<~z)(x) = 0, Ixl > ]xB[. _ (6) 

The difficulty was recognized by Wilson (1942), 
who assumed tha t  photometering between limits 
x = ±xB is equivalent to measuring the intensity in 
reciprocal space between limits ~ = ±v. l ie  thus 
derived the following equations for the observed inte- 
grated intensity and integral breadth in reciprocal 
space: 

[2 1+@ ~v2 (1-@~)v ] 
T0. ) = T arc tani--_Qtan l _ 2 ~ o s ~ v + @ 2  j , (7) 

/5e) = 2 T(° 1 
--T-" (}+@ 1-@~ ~ (8) 

1-2@ cos zev+@ ~] 

If faulting of one kind only is present, the measure- 
ment of c~ requires the determination of the two ex- 
perimental quantities /5(0 and v from any broadened 
line. If both kinds of fault are present, measurements 
must  be made on at  least two lines, having L even and 
odd respectively. The method has obvious disadvan- 
tages, however, and it may be objected in particular 
tha t  the measured function B(zB)(x) is not strictly 
related to a function/5(O(~) by an equation of type  (5). 

A more direct method of measuring @, and hence c~, 
is suggested by equation (la), which expresses the 
intensity /5(~) as a Fourier series. The procedure 
described by Stokes (1948) for separating the diffrac- 
tion and instrumental  broadening factors enables the 
coefficients of this series to be found. I t  is also pos- 
sible, in principle, to determine c~ from the quantities 
TO, ) and v, but this is unlikely to give accurate results. 

4.  U s e  o f  F o u r i e r  m e t h o d s  

Equation (1) shows that/5(~) is a periodic function of 
for both odd and even lines. To obtain the true 

values of the Fourier coefficients, A~ = @', we have 
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thus to divide the regions of x corresponding to the 
full  period into 2s divisions of equal  ~, and perform 
summat ions  of the type  

= B ( x , )  c o s  ( = m / s ) ,  = b(x,)cos ( rnls) . 

Beevers-Lipson strips are unsui table  for this purpose, 
since dividing the whole period into only 60 or 120 
divisions gives an insufficient number  of values on the 
measurable  parts  of the lines. A value of s = 200 was 
found convenient  for the {1011) line, giving intervals  
of ~ 0.1 mm. in x on 9 cm. photographs with nickel 
radiation.  Tables of cos 2~nh were therefore prepared 
at intervals  of 0.005 in h and for values of n = l - 1 0 ,  
15, 20, 25, 30, 40 and 50. As explained above, the Kc~ 2 
components of the lines were e l iminated graphical ly  
before making  the Fourier  summat ions ;  this procedure 
was much  simpler t han  the a l ternat ive  of e l iminat ing 
K ~  2 during the summations ,  and tables of sines were 
not needed. 

Since faul t ing cannot  be readi ly removed, the profile 
b(x) must  be obtained from a neighbouring s tandard  
line. This restricts the method to those broad lines 
which have  well separated sharp lines as close neigh- 
bours. In  principle, curves of the Fourier  coefficients 
of the sharp lines as a funct ion of deviat ion angle 
could be plotted, as is done for the breadths,  thus  
giving the shape of the appara tus  funct ion at all 
angles. However, this procedure would be very  tedious 
and unreliable.  In  the present work, we have found 
tha t  the Fourier  method can only be readi ly  applied 
to the {10]-1} line. 

For normal  amounts  of fault ing,  the Fourier  coef- 
ficients of fl(x) decrease very slowly with n. This 
means  tha t  high accuracy cannot  be expected, espe- 
cially for higher values of n, since the  coefficients of 
B(x) do not decrease sufficiently rapid ly  compared 
with those of b(x). This disadvantage,  of course, 
appears in all methods of measur ing the faul t ing 
parameter ;  it  means, for example,  tha t  the breadth  
of B(x) is not  Very much  greater t han  tha t  of b(x). 

The diffraction shape fl(x) has a very  long ' tai l ' .  
The parts  of a line which are not  photometered will 
thus  lead to considerable errors in the values of A~ 
for small  n, as pointed out by  Eastabrook & Wilson 
(1952). An invest igat ion of this  effect for s train 
broadening has been made by Wil l iamson & Smal lman  
(1954); in order to test its importance in the present 
work, we have followed the procedure of these la t ter  
workers and carried out a numerical  analysis  on a 
theoretical  line shape. The results are shown in Table 1. 
We assumed a = 0.090, and the calculated in tens i ty  
values from equation (lb) for an odd line were rounded 
to the nearest  1% of the peak intensi ty.  Three sets of 
values are given, the background level being assumed 
to have its correct value, and to be placed too high by 
1 and 2% respectively of the peak intensi ty.  In  the 
la t ter  two cases, the parts  of the line actual ly  recorded 
correspond to ~th and ~ - t h  of the whole period, and 

Table 1. Fourier coefficients derived from numerical 
analysis of theoretical line with ~x = 0.090. 

Aln; Aln; Aln; 
normal background background 

n An= (--@o)n background 1% high 2 % high 

0 1.000 0.932 0.866 0.816 
1 0.952 0.932 0.866 0-816 
2 0.906 0-928 0.866 0.816 
3 0.862 0.872 0.834 0.784 
4 0.820 0.832 0.822 0-768 
5 0.780 0.784 0.770 0.752 
6 0.743 0-744 0.738 0.728 
7 0.707 0.700 0.702 0.700 
8 0.673 0"656 0.670 0"672 
9 0.641 0.624 0.638 0.640 

10 0.609 0.592 0.606 0.616 
15 0.475 0.468 0.462 0.460 
20 0-370 0.364 0.374 0.368 
25 0.289 0.288 0.282 0.284 
30 0.225 0-228 0-226 0.228 
40 0.137 0.132 0.142 0.128 
50 0.083 0.096 0.090 0.088 

it is seen from the table  tha t  the calculated A~n values 
correspond to the theoretical  values for n > 4 and 
n > 6 respectively.  

In  an actual  experiment ,  the A~ values are mul- 
t ipl ied .by an unknown constant,  and it  is usual  to 
normalize to A0 ~ = 1. If we call these normalized values 

t 

A,,  we have : 
! 

An = An@~/Ao, 

where An is a funct ion of n and represents the tai l  
errors. As n increases, the tai l  errors become un- 
impor tant ,  and A n --> 1. A graph of log A~ against  n 
should thus  be curved at  first, but  should soon become 
a s traight  line of slope @. From this slope, a m a y  then 
be determined.  

In  Fig. l(a) we show an exper imenta l  log A~ versus 
n plot for a {1011) line from a specimen containing 
growth stacking faults. The profile b(x) was obtained 
from the neighbouring {200) cubic line, which is of 
comparable  intensi ty.  The graph is a s t ra ight  line of 
slope -0 .022  from n = 3 to n = 20. From the rela- 
tion between the breadths  of the  odd and even lines, 
it  was obvious tha t  faul t ing was p redominan t ly  of 
the growth type, and the  value of a thus  obtained 
(0.092) agreed well with est imates based on line- 
breadth  measurements .  

The results shown in Fig. l(a) are not quite typica l ;  
they  represent  one of the best log A'n versus n curves 
tha t  we have obtained. In  a large number  of cases, 
curves of the type  shown in Fig. l(b) were obtained. 
The first par t  of the curve has the expected shape, and 
there is a short  s traight-l ine region from which a value 
of ~ m a y  be deduced, bu t  at  higher values of n (rang- 
ing from 9 to 20 in different films) the curve f lat tens 
and then  gives rise to an oscillating portion. These 
effects are almost  cer tainly due par t ly  to the decrease 
in accuracy in determining A'n for large n, referred to 
above, al though the f la t tening m a y  also be caused by 
other effects (see below). 
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Fig. l(b) includes the Fourier plots from two odd 
lines, {1011} and {2021}, and the slopes of the straight- 
line portions are in good agreement with each other. 
At tempts  were made to obtain Fourier plots from the 
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Fig. I. (a) Fourier plot of {10il } line for specimen containing 
growth faults. 

(b) Fourier plots of {1011} and {2021} lines. Ordinate 
scales displaced for clarity; bracketed values are for {2051 }. 

(c) Fourier plot of {1012} line from the same film as the  
results in Fig. l(b). Curve (a): assuming random faulting; 
curve (b): assuming 20% of the diffracting volume is 

i unfaulted. A n values for curve (b) are re-normalized to 
A 0 = 1, but  ordinate scales are displaced for clarity. 

{10i2} and {10i3} lines on the same film, but  the 
profiles were too uncertain for very reliable results. 
The curve for the {1012} line also has a short linear 
portion, and is shown in Fig. 1 (c). Values of ~ obtained 
from Figs. l(b) and (c) on the assumption of random 
growth faulting are ~ 0.080 and ~ 0-043 respectively, 
and this assumption is thus shown to be incorrect 
unless the errors are larger than anticipated. A similar 
discrepancy between odd and even lines was found in 
this and other films by the line-breadth method, and 
suggests either tha t  there is some deformation faulting 
present, or tha t  the diffraction theory is inadequate 
in some way. 

Calculation of ~ and ~' from the slopes of the curves 
by means of equation (3) leads to the values ~ = 
0.024, ~' = (~022, which seem quite reasonable. How- 
ever, the line-breadth results suggested the possibility 
of an alternative explanation, namely tha t  the faults 
are clustered rather than randomly distributed. To a 
first approximation, a specimen containing clustered 
faults may  be treated as a mixture of randomly 
faulted and unfaulted regions, and we assume tha t  

i 
the diffraction effects are additive. The log An versus n 
curve calculated on the basis of random faulting would 
thus tend to a constant minimum value with in- 
creasing n, instead of to zero, and the curves of Figs. 
l(b) and (c) do show evidence of such a tendency. 
To obtain the Fourier coefficients of the faulting, we 
have now to subtract  constant amounts from the 
measured coefficients. Fig. l(c) also shows the log _/1~ 
versus n plot for the {10i2} line, assuming tha t  20% 
of the diffracting volume is unfaulted, and tha t  the 
faults are randomly distributed in the remainder. The 
straight-line region now extends to rather  higher n 
values, and the change in slope increases the value of 
(assuming growth faults only) to -~ 0-06. The value of 

from the odd lines is also increased, though to a 
smaller extent, so tha t  the quanti tat ive disagreement 
has been reduced but not  eliminated. The discrepancy 
could be caused by the rather unrealistic assumption 
about the diffraction effects of clustered faults, but  it 
seems more probable tha t  the correct explanation lies 

1.0 

0-9 

- 0-8 

\ 
O-7 \ 

0 ; lb l's 
n 

Fig. 2. Fourier plot of (1011 } line for specimen containing 
deformation faults. 
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in the presence of both kinds of fault, rather than in 
the clustering of growth faults alone. We hope to 
pursue this question further with more accurate 
Geiger counter data;  in the meantime the present 
results suggest tha t  accurate values of ~ may  be 
obtained from the Fourier plot of the {1011} line, but  
the type of faulting and the possible existence of other 
effects must be checked by fine-breadth and/or line- 
shape measurements on the remaining lines. 

Cobalt powder which was mechanically deformed in 
order to complete the transformation was found to 
contain faults which were predominantly of the defor- 
mation type. The lines with L = 0 or H - K  = 3N 
were still sharp, but  the other lines were broadened 
by approximately equal amounts. Fig. 2 shows the 
Fourier plot of the {1011} line from such a film; the 
straight-line portion gives a '  = 0.051. 

5. U s e  of l i n e - b r e a d t h  m e a s u r e m e n t s  

The calculation of c~ from the observed profiles B(x) 
and b(x) by measurement of line breadths will be 
discussed in this section. The calculations required are 
not so tedious as those in the previous section, and the 
method has the advantage of being more readily 
applicable to all the lines on a powder photograph. 
The stages in the calculation may  be enumerated as 
follows: 

breadth method is to find a functional relation be- 
tween the three quantities which will obviate the need 
for calculating the Fourier coefficients. In  simple 
cases, equation (5) may  be solved directly to give this 
relation, either by fitting B(x) and b(x) to analytical 
expressions, or by assuming an expression for fi(x) 
from the diffraction theory, together with an analytical 
form for b(x). 

In our results, we observed tha t  none of the analyt- 
ical line profiles used by previous workers were very 
good approximations to B(x) and b(x). The best fit 
for both profiles was obtained from expressions of the 
form C/(l+kexg) ~ which are intermediate between 
Gaussian and Cau.chy line shapes. The relation be- 
tween the breadths when both are of this form has 
been found by Schoening, Niekerk & Haul (1952). 
I t  seemed worth while also, however, to derive the 
relation which is valid if b(x) only is assumed to have 
this shape, and fl(x) is given its correct shape as in- 
dicated by the diffraction theory. In an Appendix, 
we show tha t  this relation is given by:  

flz/B~ = ½{1-4(b~/Bz)+[8(b~/B~)+ 1]½}. (9) 

In Fig. 3, we show the various relations between 
the three breadths, plotted in the usual form of biB 
against fl/B, which have been used by different work- 
ers. The extreme curves of Scherrer (1920) and Warren 
(1941) do not seem to correspond to conditions en- 
countered in practice. The curve of equation (9) is 

, (2 )  

i i i I 
0"2 0"4 0-6 0"5 1 "0 

bib 

Fig. 3. Relations between fix, Bx and bz. 
Curve 1: fl/B = (1--bZ/B2) ½ (Warren, 1941). 
Curve 2: Equation (10) of text. 

(1) Measurement of the breadth, Bz, of B(x) and 1.0 
of the corresponding standard breadth bz. 

(2) Calculation of the diffraction breadth, flit, and 
hence of fl(o in equation (8). 

(3) Calculation of v from the measured limits of x. 0.8 

The measurement of B~ requires little comment, 
except to point out the difficulties of locating the 
background level with diffuse high-angle lines (e.g. 0.6 
{2022} and {2033} with nickel radiation). The integral fl [8 
breadths of these lines were never considered reliable. 

Since faults cannot be removed by annealing, b~ 0-4 
cannot be measured directly, and a curve of standard 
breadths versus deviation angle must be plotted. 
Edwards & Lipson used the sharp lines from f.c.c. 
cobalt for this purpose, and, in addition, the h.c.p. ,0-2 
lines with L = 0 are almost unbroadened in powder 
photographs and may  also be used as standards. With 
nickel radiation, this gives only three lines which may 
be used freely, namely {1010}, {200} and {400}. I t  was '°0 
found possible to separate {222} from its interfering 
neighbour {0004} merely by finding the correct back- 
ground level, using equations equivalent to (5) and (6) 
of Anantharaman & Christian (1953). Three other 
pairs {111} and {0002}, {220} and {1120}, and {311} 
and {1132} were separated by a slightly generalized 
version of the method for doublet separation. 

The relation between fir, b~ and B~ depends on the 
profiles of the fines. When Stokes' method is used, 
fir is obtained directly, but  the object of the line- 

Curve 3." Relation given by Schoening et al. (1952). 
Curve 4: Relation given by Alexander & Klug (1950). 
Curve 5: Relation given by Jones (1938) and equation (9) 

of text. These are indistinguishable on the scale 
used. 

Curve 6: f iB = 1--biB {Scherrer, 1920). 
Points marked • were obtained by Stokes' method. 
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almost identical with that  of Jones (1938) over the 
whole range of values, although quite different as- 
sumptions were used in the derivations. The curve 
given by Schoening et al. is very similar to one derived 
for counter diffractometers by Alexander & Klug 
(1950), although, once again, the assumptions were 
different. Fig. 3 also shows that these last two curves 
can be approximated quite closely by the very simple 
empirical equation 

= bx/Bx. (10) f l x / B x  1 - ~ 

Some results obtained by the Stokes method are also 
included in the figure, but these are inconclusive in 
indicating the best relation. Attempts were made to 
test the relations by photographing the same specimen 
in different cameras and with different radiations, thus 
varying bx considerably, and comparing the consistency 
of the a values. Of course a direct comparison of fix 
values would have been preferable, but variation of 
b(x) also involves variation of x~ (i.e. of v), so that  
there is an apparent change of diffraction breadth 
which can only be eliminated by calculating a. 
Owing to asymmetry in the geometrical conditions, 
there is often a discrepancy between the fix values 
obtained from the same line on the two sides of one 
film (this is shown also by Edwards & Lipson's results), 
so that  calculations should be made for each side 
separately. The results in Table 2 were obtained from 

Table 2. Results for ~x obtained from the {1011} line 
of one specimen using different radiations and cameras 

Curve of Fig. 3 
used for flz and  x~ Mean value of a Mean devia t ion  

1 0.149 0.021 
2 0.107 0.004 

3, 4 0.101 0.006 
5 0.087 0.005 
6 0.066 0.003 

the {10il} hne in four different photographs, using 
nickel, cobalt and molybdenum radiations and 9 and 
19 cm. diameter cameras. 

Obviously Warren's equation is unsatisfactory, and 
the Fourier results show in any case that  curves (1) 
and (6) are unsuitable. The results do not, however, 
distinguish between curves (2)-(5) on the basis of 
consistency, although the values of a obtained from 
these curves cover a range of 20 %. Before considering 
this question further, we describe how the results in 
Table 2 are derived. The appropriate relation having 
been used to calculate flz, the breadth fl(~) is given by 

c ~ sin 20 
fl(~)= RA2L fix, (11) 

where R is the camera radius, ~t the X-ray wavelength, 
0 the Bragg angle of the reflexion, and L the value of 
h a at the peak. This equation is a good approximation 
and calculation shows t h a t  the errors it introduces 
may be neglected. These errors are greatest for 

L = 0, where the equation predicts fix = 0, although 
this is not strictly true. 

Edwards & Lipson (1942) apparently measured the 
length, xB, from the peak to one end of the back- 
ground level in the photometric record, and used 
equation (11) to calculate v, replacing fix by xB and 
fl(v by v. This procedure neglects the fact that  a finite 
range of x is required to obtain the intensity contained 
in an infinitesimal range of $, as shown by the instru- 
mental broadening of normal lines. The difficulty was 
mentioned earlier and arises because we are really 
not able to measure fl(~) for a definite range v = i ~ .  
However, it is clear that  a better approximation is 
obtained if we assume that v of equation (8) is related 
to a quantity x~ which is determined both by XB and 
by xb, the corresponding photometered range for a 
standard line. The relation between x~, XB and xb is 
unknown, of course, but must fall within the limits of 
the possible relations between the breadths, given in 
Fig. 3. As a purely arbitrary assumption, we have 
taken the relation to be identical with the breadth 
relation, so that  the curves in Fig. 3 were also used 
in calculating x~ and hence v. Equation (8) could then 
be used to obtain ~ from fl(~) and v; to facilitate the 
calculation of results when growth faulting only had 
to be considered we plotted curves of a against fl(~) 
for various values of v for both odd and even lines. 
The value of a is actually insensitive to small changes 
in the value of v, except when v is small, so that  any 
correction to xB of about the right magnitude is 
satisfactory. I t  is, however, necessary to make the 
correction, and the consistency of the results in 
Table 2 disappears if xB instead of x~ is used to 
calculate v. 

A further demonstration of the effects of this cor- 
rection is given in Table 3. This gives results obtained 

Table 3. The frequency of faults calculated from one line 
at different arbitrary background levels 

a(us ing  xB a(us ing  x~ 
Level  fix (ram.) for v) for v) 

Measured background  0.415 0.088 0-089 
1 0.368 0.082 0"087 
2 0.326 0-074 0.090 
3 0-282 0-066 0-095 
4 0.230 0-057 0.094 
5 0"190 0"048 0.086 
6 0-127 0.030 0"090 

from an experimental {1051} line and its neighb0uring 
sharp {200} line by assuming various arbitrary back- 
ground levels above the measured background. The 
results may be only approximate, because the relation 
between fix, bx and Bx necessarily changes when the 
background and hence the shapes are materially 
altered. Nevertheless, the ~ values obtained by using 
equation (10) for fix and calculating v from x~ clearly 
show a systematic trend, with the errors due to over- 
estimation of v becoming important at low v. The 
correspondir~g results obtained when v is calculated 
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from xa are very  consistent.  The errors in es t imat ion 
of v become impor tan t  for v < 0-1, and in Table 3 
this  occurs at level 2 (background 8 % high). Thus the 
correction is quite un impor t an t  for the {1011} line, 
but  m a y  be appreciable  for higher-angle lines, where 
the  photometered range corresponds to smaller  values 
of v. 

The method of using artificial  background levels 
was also used to compare the ~ values obtained with 
the use of curves (2)-(5) of Fig. 3. The values obtained 
at  different  imaginary  levels were most consistent for 
the group of curves (2)-(4). Using the same experimen- 
ta l  line a n d  assumed background levels, values of a 
were also calculated from T(~) and v, using equat ion 
(7). In  this  case, values of T(~)/T could not be deter- 
mined directly, bu t  a value of T was chosen to give 
best in ternal  consistency. The results for ~, though 
only approximate ,  sat isfactori ly confirmed those from 
breadth  measurements .  As a typical  example,  the 
mean  values of o~ obtained by  breadth  measurements  
with curve (2) of Fig. 3 and by  in tens i ty  measurements  
were 0.090 and 0.082, and  the mean  deviat ions were 
2.8 % and 12.9 % respectively.  

All these results indicate  without  any  cer ta in ty  
tha t  the group of curves (2)-(4) give bet ter  results 
t han  does curve (5). Since the ~ values of curves 
(2)-(4) are almost  identical,  we have used equat ion (10) 
as an adequate  representat ion of them all. The choice 
is confirmed by  comparison of results obta ined from 
(1011} lines by  the Fourier  method and the  line- 
breadth  method.  In  Table 4, this  comparison is made  

Table 4. Comparison of values of o~ obtained by Fourier 
analysis and line-breadth measurements of {1011} lines 

Film No. a (Fourier analysis) a (line breadth) 

4 0.080 0.063 
5 0.082 0.090 
6 0.092 0.090 
7 0.088 0.102 
8 O.085 0.08O 

36 0.109 0.104 
50* 0.051 0.051 

* Deformation faults. 

ened line of the powder photograph,  and  the con- 
sistency of these values provides the  most  obvious 
check on the  accuracy of the method.  Wilson 's  cal- 
culations (1942), using the exper imenta l  da ta  of 
Edwards  & Lipson, gave very  consistent results when 
the correction for photometer ing range was applied. 
The actual  agreement,  however, was obtained only 
by  using average flz values from both sides of the film, 
and this is probably  not  justified, since the indiv idual  
values for a given line differed by  up to 30%. 

In  some of our fi lms the results for ~ from different 
lines were consistent when the method  of calculation 
outl ined above was used;  in others some differences 
were found. A typical  set of results of the second kind 
was given by  the f i lm analysed by  the Fourier  method 
in Fig. l(b) and  (c), and is shown- in  Table  5. The 

Table 5. Values of o¢ obtained from a single 
Debye-Scherrer photograph of cobalt 

Line 

{iOil} 
{I012} 
{101_3} 
{202_1 } 
{2022} 
{2023} 

a (random growth a (assuming 15 % 
20 (°) faulting) unfaulted) 

51.2 0-063 0-078 
67.8 0.044 0.076 
92.0 0.050 0.076 

104.3 0.063 0.076 
119.7 0.055 0.090 
155.3 0.055 0.074 

{1014 } line too faint for reliable measurements. 

lower values of ~ from the even lines suggest tha t  the  
faul t ing is of mixed type,  and we have seen tha t  this  
satisfactori ly explains the Fourier  results. The alter- 
na t ive  assumpt ion of an unfaul ted  fract ion has also 
been mentioned,  and in the last  column of the table  
we show the improvement  thus  obtained.  Similar  
improvements  were found to be possible in all the  
inconsistent  f i lms by this method,  so tha t  the model 
m a y  be justified. 

In  specimens containing either growth or deforma- 
tion faults  alone, calculations indicated tha t  the most  
consistent results were obtained by  using curve (2) 
of Fig. 3, ra ther  t han  curve (5). 

on the basis of ~ values for convenience, bu t  it should 
be remembered  tha t  in each case the quan t i ty  ac tual ly  
determined is @. Thus some of the values are ficti t ious 
in the sense tha t  deformat ion faults  are also present.  
Comparison of 0¢ values, calculated on the basis of 

g r o w t h  faults  only, provides a more sensitive indica- 
t ion of the accuracy, since a small  change in @ pro- 
duces a re la t ively large change in c~. The agreement  
m a y  be regarded as satisfactory, and gives reasonable 
confidence in both methods.  

6. The  poss ib le  occurrence  of c lustered faults  

If line broadening is caused entirely by faul t ing of one 
type,  a value of ~ m a y  be obtained from each broad- 

7. Conclus ion 

The measurement  of both a and a '  requires the 
determinat ion of @o and @e from two lines of the  
powder photographs.  Our results indicate tha t  a re- 
l iable value of @o m a y  be obtained from the (1011} 
line by  the Fourier  method,  and a less reliable value 
of @e from the (10Y2} line. Line-breadth  measurements  
give sat isfactory results in most  circumstances,  and 
are par t icular ly  valuable  in deciding whether  the 
faul t ing is p redominan t ly  of one type.  Spontaneously 

t r a n s f o r m e d  cobalt  specimens often contain pre- 
dominan t ly  growth faults,  whereas specimens which 
have been stressed to complete the t ransformat ion  
con ta in  deformation faults.  Specimens with mixed 
faul t ing have also been encoun te red ,  and al though 
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l ine-breadth measurements  indicate tha t  these results 
can also be explained as a clustering of the  growth 
faults, this  is not  supported by  the Fourier  data.  
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A P P E N D I X  

We derive the relat ion between B~, bx and fl~ when 
b(x) = c/(l+k2x~) ~ and /~(x) is determined by  equa- 
t ion (1). If  the cosine Fourier  t ransforms of B(x), 
b(x) and fl(x) are L(t), M(0  and N(t), it  follows from 
equation (5) tha t  

L(t) = (2~)½M(t)N(t). 

From the assumpt ion about  b(x), 

.M(t) = (z~/2)½(c/2b)(1 +t/b) exp ( - t / k ) .  

Since x is very  near ly  a l inear funct ion of ~ over the 
range of interest,  we m a y  measure x in units  of ~ and 
write equation (1) in the  form 

co 

fl(x) = Oi l  +2  ~ e m cos ~mx] 
1 

F ~ 26' ~ cos ~mxdm 
0 

26" 
- l ~  t/'~ cos x td t ,  

~ ~0 

where t = ~m. The Fourier  t ransform is thus  

N ( 0  -- ( ~ / 2 / ½ ( 2 c / ~ / d  #~ • 

In  order to proceed further,  we have to use the ap- 
proximate  expression, valid for small  ~x, 

0 = exp ( - f l~ ) ,  

and we also have  b~ = ~/2/c. We thus obtain 

L(t) -- A(1 +2b#/ze) exp {-(2b~+fl~)t/z~}, 

where A is a constant.  
The breadth  B~ is given by  

F Bx = 9, o B(x)dx/B(O) = ~L(O) L(Odt .  

Since L(0) = A and 

(2b,+fl,)2J ' 

we f ind 
Bx -- (2bx+ fl~:)2/(4b~+ fl~) . 

The solution of this  equat ion gives equat ion (9). 
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